Diagnosis of Fasciola hepatica in livestock

Chasing the fluke or it's impact?

Johannes Charlier

Laboratory of Parasitology Faculty of Veterinary Medicine Ghent University

Contents of presentation

- Available diagnostics and their evaluation
- Correlation with fluke burden and productivity
- From parasitic to economic diagnosis

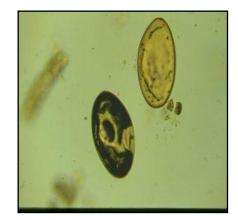
Diagnostics available

Coprology

Serology

Copro-antigens

DNA-based



Coprology (1)

Microscopic detection of eggs

 Numerous methods described (Sedimentation-(flotation))

PRO'S	CON'S
SpecificityCurrent infections	 Sensitivity

Coprology (2)

Method	Se	Sp	Reference
S 10 g	33%	-	Conceiçao et al., 2004
S 30 g	83%	-	
S 10 g	69%	98%	Rapsch et al., 2008
S 10 g – 2 times	86%	98%	Rapsch et al., 2008
S 10 g – 3 times	90%	98%	Rapsch et al., 2008
S-F 4 g	43%	100%	Charlier et al., 2008
S-F 10 g	64%	93%	Charlier et al., 2008

Serology (1)

Detection of F. hepatica-specific antibodies in serum or milk

 Many elisa's have been described based on complete or subfraction of excretory-secretory (ES) products of F. hepatica

PRO'S	CON'S
 Higher Se High-throughput User-friendly matrix: milk 	 Active infection?

Serology (2)

	ES	"f2"	MM3
Se	86-100 %	88-98 %	99 %
Sp	83-96 %	84-98 %	100 %
Commercial format	Svanova	IDEXX	Bio-X
References	Anderson et al., 1999 Cornelissen et al., 1999 Salimi-Bejestani, 2005 Charlier et al., 2008 Kuerpick et al.,2013	Reichel, 2002 Molloy et al., 2005 Rapsch et al., 2006 Charlier et al., 2008 Kuerpick et al.,2013	Mezo et al., 2010

Copro-antigen

MM3-copro-ELISA (Mezo et al., 2004):

- Detection of active infection with high Se and Sp. (> 95%)
- Commercial version available (Bio-X Diagnostics, Jemelle)
 - Field evaluations report rather low sensitivity (Düscher et al., 2011; Salem et al., 2011, ...)
 - Succesfully applied in copro-antigen reduction test (CRT)

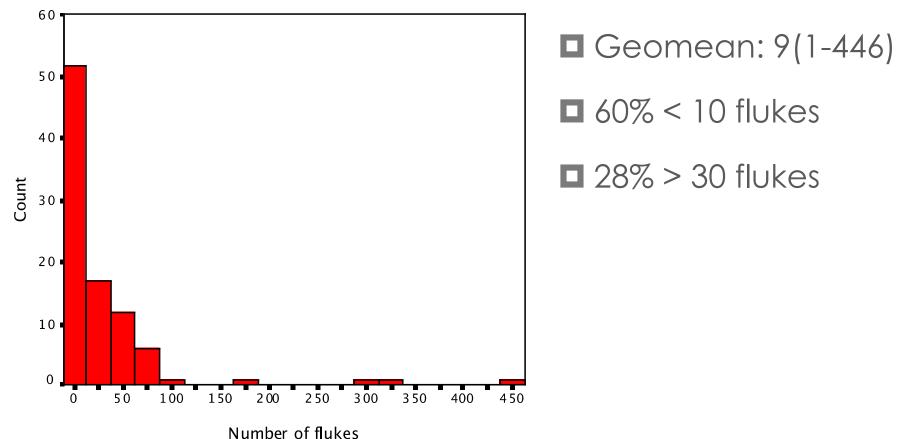
DNA-based methods

DPCR (Martinez-Perez, 2012):

- Highly Se/Sp
- Detection 2 weeks pi vs. 4 weeks pi for coproantigen

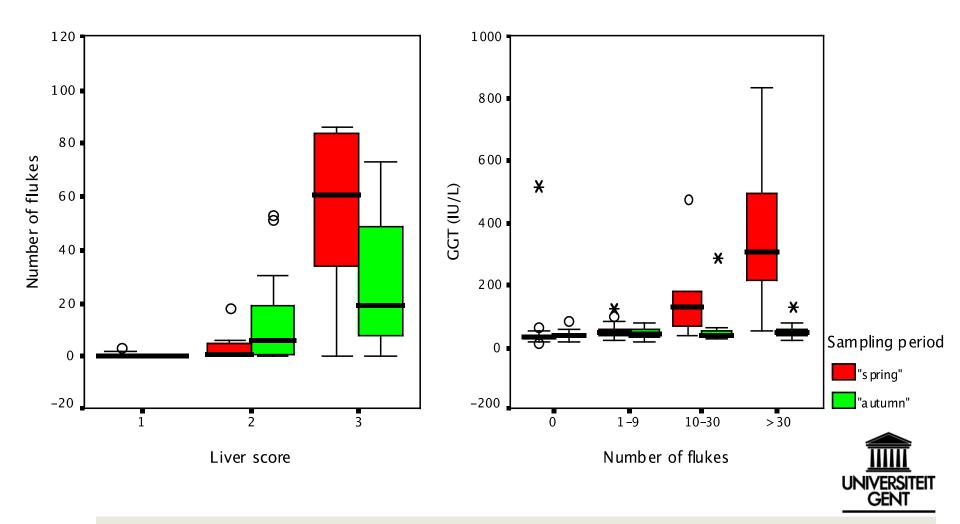
LAMP (Ai et al., 2010):

- Amplification in ca. 60 min under 61 °C.
- Reaction visible by naked eye
- Potential of pen-side diagnostic?



The problem with current approach

What is the message?



Closer look at the fluke burden (1)

Closer look at the fluke burden (2)

Correlation of diagnostics with fluke burden

- Coprology to detect infections with > 10 flukes
 - SF on 4 g: PPV 87%
 - SF on 10 g: PPV 48%.

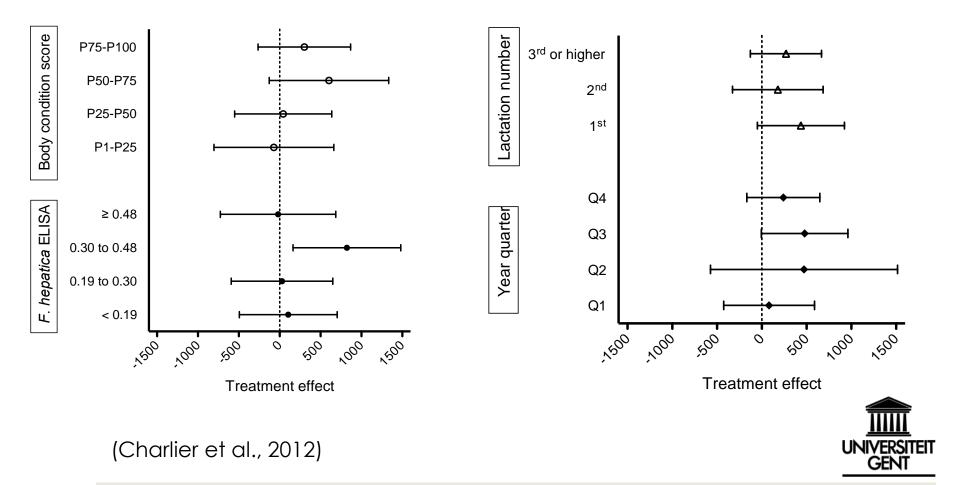
Copro-antigens: $R \approx 0.6$

■Serology ES ELISA: $R \approx 0.3$

Correlation of diagnostics with production parameters (1)

ESELISA (Charlier et al., 2007; 2009; Kuerpick et al., 2012)

- Herd average milk yield (3%)
- Herd mean carcass weight (0.7%)
- Intercalving interval (+ 5 days)



- "Light infection": no effect
- "Heavy infection": -2 kg milk/cow/day

Prediction of production responses

Estimating herd-specific cost of disease

00	ParaCalc	
+ Shttp://new.paracalc.be	/company/view/id/3300	C Google
ParaCalc		+

Estimated costs of worm infections on your herd

	Gastrointestinal worms		Liver fluke	
	Young stock	Dairy cows	Young stock	Dairy cows
Production losses	NA	£ 4,272.00	NA	£ 241.00
Cost of anthelmintics	£ 0.00	£ 0.00	£ 0.00	£ 400.00
Total	NA	£ 4,272.00	NA	£ 641.00

Total costs gastrointestinal worms per year:	£ 4,272.00
Total costs gastrointestinal worms per cow:	£ 61.00
Total costs liver fluke per year:	£ 641.00
Total costs liver fluke per cow:	£ 9.00

Download PDF Report

) + +

Statistics

Putting it all in the right context

G Model PREVET-3261; No. of Pages 8

ARTICLE IN PRESS

Preventive Veterinary Medicine xxx (2012) xxx-xxx

Conceptual framework for analysing farm-specific economic effects of helminth infections in ruminants and control strategies

Mariska van der Voort^{a,b,c,*}, Johannes Charlier^b, Ludwig Lauwers^{a,c}, Jozef Vercruysse^b, Guido Van Huylenbroeck^c, Jef Van Meensel^a

Conclusions

Wide array of diagnostics available

- Antibody detection: detect farms/animals "at risk"
- Coprology: support treatment decisions
- Traditional focus very much on Se/Sp

Need for novel approaches to assess the farm-specific impact of fasciolosis before taking remedial measures

Acknowledgements

Prof. Diana Williams FP7 GLOWORM- N° 288975CP-TP-KBBE.2011.1.3-04

and a plantage and a standard